Short communication — Kort berig

First record of Acanthocheilonema dracunculoides from domestic dogs in Namibia

E V Schwan* and F G Schröterb

ABSTRACT

Acanthocheilonema dracunculoides was diagnosed in 2 dogs from Windhoek, Namibia, by acid phosphatase staining of microfilariae. This is the 1st record of A. dracunculoides in Namibia.

Key words: acid phosphatase staining, Acanthocheilonema dracunculoides, dog, microfilariae, Namibia.

Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa.

Acanthocheilonema dracunculoides Cobbold, 1870 (syn. Dipetalonema dracunculoides), is a vector-borne nematode parasite (Filarioidea: Onchoercidae) of the domestic dog and some sylvatic carnivores (Proteocephalidea: Proteocephalidae, Proteocephalidea: Proteocephalidae, spotted hyaena; Vulpes vulpes, red fox). The parasite occurs in Europe, Asia and Africa12. In Africa it is known to be endemic in Morocco30, Algeria31, Tunisia30–32, Mali12–14, Niger12, Democratic Republic of Congo9, Sudan2, Somalia12, Kenya15,16, Tanzania30 and South Africa12, in which country it was first described by Cobbold from an aardwolf. Acanthocheilonema dracunculoides follows an indirect life cycle. In those carnivores, which act as final hosts, the predilection site of the male and female adult parasites is mainly the peritoneal cavity19. Infection is often discovered accidentally during intra-abdominal surgical procedures. Males are 15–32 mm long and 0.1–0.2 mm wide, whereas females are 30–60 mm long and 0.1–0.3 mm wide8,10,11,19,23. The male spicules are unequal and measure 273–414 and 120–165 µm in length respectively8,10,11,19,23. Sexually mature females are viviparous, i.e. they produce L1-stages, known as microfilariae, which eventually appear in the peripheral blood. Microfilariae are unsheathed and measure 185–276 µm (length) by 4.2–6 µm (width)8,10,11,13,19,25,26. So far, the louse fly Hippobosca longipennis and the hard tick Rhipephalus sanguineus have been identified as intermediate hosts5,15,17. Microfilariae ingested during blood feeding transform into metacyclic (infective) L3-stages and eventually accumulate in the mouthparts of the respective arthropods involved. Final hosts become infected during blood feeding. The migrational pattern and development within the final hosts are unknown. Similarly, the duration of the prepatent and patent periods is unknown. Acanthocheilonema dracunculoides is regarded as largely apathogenic. However, there are several reports from Spain, where high prevalence rates of A. dracunculoides have been recorded, according to which infected dogs occasionally present with dermal clinical signs and lesions ranging from pruritus, alopecia, erythema to skin ulcers as well as other clinical signs such as ataxy, incoordination, cachexia and pleural effusion5,9,19,25. From a differential diagnostic point of view, A. dracunculoides must always be considered in connection with canine filarioses of other aetiologies and in particular cardiovascular dirofilariosis caused by Dicrofilaria immitis, colloquially known as heartworm. This paper represents the 1st record of A. dracunculoides in Namibia. The parasite was encountered in 2 domestic dogs.

An 8-year-old St. Bernard bitch (Dog A) and a crossbred male dog of unknown age (Dog B) of different ownership were presented to the Windhoek Veterinary Clinic in Windhoek, Namibia, with inappetence and poor appetite. Physical examination of Dog A revealed a slightly elevated rectal temperature of 39.6°C, marked weight loss, inappetance and ascites. Cardiomegaly and hepatomegaly were diagnosed on radiographic examination. Physical examination of Dog B additionally revealed vomiting, hind leg lameness and a bilateral cornal oedema. Cam’s Quick-stained thin blood films prepared from peripheral blood obtained from a pricked ear pinna of both animals revealed the presence of isolated microfilariae as well as a marked leukocytosis and eosinophilia. Additional blood samples were collected from the cephalic vein of both animals into EDTA coated vacuum tubes to conduct further analysis of microfilariae. Of each sample, a 2 μl aliquot was screened for microfilariae by membrane filtration using 3.0 µm Isopore® membrane filters (Millipore) stained with Giemsa1. Examination of the Giemsa-stained membrane filters showed the presence of unsheathed microfilariae. They varied in width from 4.7 µm to 5.6 µm at the widest part of the anterior end and varied in length from 218 to 245 µm. The microfilariae were eventually identified by acid phosphatase staining as those of Acanthocheilonema dracunculoides, showing the typical somatic pattern of enzyme activity at the cephalic vesicle, excretory pore, ‘Innenkörper’ (inner body) and anal pore5,9,20 (Fig. 1). The animals were treated with ivermectin (Ivomec Injection, Merial) at 200 μg/kg once subcutaneously but could not be followed up. Both animals had never left Namibian territory.

Acanthocheilonema dracunculoides has never before been reported from the domestic dog or any sylvatic carnivore in Namibia. Although the species is regarded as largely apathogenic in dogs, there is some evidence reported from Spain that suggests that occasionally the parasite may not be as innocuous as generally assumed5,9,25. Dermal clinical signs interpreted as a result of A. dracunculoides infection improved following treatment with ivermectin at a dose rate of 50 μg/kg administered subcutaneously or per os5,9. Whether the clinical signs or part of them recorded in Dog A and Dog B are a sequel of the filarial infection diagnosed, cannot be answered considering the scarce clinical information available and the fact that the animals were not followed up.

*Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa.

bFormerly Windhoek Veterinary Clinic–Tierklinik, PO Box 5030, Windhoek, Namibia.

*Author for correspondence.

E-mail: vschwan@op.up.ac.za

Received: October 2005. Accepted: October 2006.
ACKNOWLEDGEMENTS

The senior author would like to acknowledge Mrs A. Lourens from the library of the Faculty of Veterinary Science for her relentless effort in obtaining articles from overseas.

REFERENCES

7. Cobbold T S 1870 Description of a new generic type of onchocerca from the aardwolf (Proteles); with remarks on its affinities, especially in reference to the question of parthenogenesis. Proceedings of the Zoological Society of London: 9–14