Monensin poisoning in ostriches

An ostrich producer ordered tylosin premix in order to treat respiratory disease in his ostrich flocks. Upon receipt of the product it was mixed into the feed at 500 ppm. Six days after commencement of feeding the medicated ration, 1 bird was observed to be lame (remained sitting). By day 7, 5 birds were lame; by day 8, 8 birds were lame and 1 bird had died; by day 9, 30 birds were lame, and mortality was increasing. At this time a veterinarian discovered that the farmer had, due to a clerical error, been supplied with monensin instead of tylosin, and the ration was withdrawn and replaced with a non-medicated ration. Mortality continued to day 14, with the following losses:

1 adult bird (aged 3–4 years), 6 birds aged 14 months, 2 birds aged 12 months, 22 birds aged 9–10 months, 15 birds aged 7–8 months and 3 birds aged 5 months, a total of 49 birds.

All the affected birds developed lameness and ataxia, and died. Post mortem lesions were severe reddening of the duodenal mucosa with thick mucous content, liver congestion and sparse myocardial petechiae. No obvious lesions were observed in other organs. Stomach contents contained traces of monensin. Histopathological examination revealed severe multifocal hyaline degeneration and necrosis of the intercostal muscle, mild multifocal atrophy of the myocardium, and mild diffuse liver degeneration. These lesions are evidently compatible with ionophore toxicity, and conform to those previously described.1 When young (3-month-old) ostriches were fed monensin at 100 ppm no mortality occurred (Allwright, pers. comm.), but susceptibility appears to be age-related. In the light of the above experience, it is recommended that all containers of monensin should carry a warning against use in ostriches, as is already the case in equines.

Reference
1. Huchzermeyer FW 1998 Diseases of ostriches and other ratites. ARC - Onderstepoort Veterinary Institute, Pretoria

A J Morley
Veterinary Diagnostics and Research Laboratory, PO Box 241, Oudtshoorn, 6620 South Africa

The hidden dangers of anaesthetic machines

In a recent, unpublished survey of 161 practitioners in South Africa it came to light that 93.7 % of practitioners had anaesthetic machines available in their practices. Halothane was the most common inhalation agent used (91.3 %) but both isoflurane (15.5 %) and enfurane (1.3 %) were available. What is of significant concern is that only 11.8 % of practitioners applied any form of scavenging to prevent contamination of the operating room environment. Volatile anaesthetic agents and some carrier gases may pose a significant health risk to staff.

Low concentrations of volatile anaesthetics and nitrous oxide may alter cognitive and motor function of personnel in the operating theatre. If this occurred, patients would be exposed to significant risk of human error. The evidence in the literature of the effects of low concentrations of anaesthetic gases is inconclusive. Prolonged exposure to sub-anaesthetic concentration of halothane may lead to enzyme induction and altered metabolism of drugs. Mutagenicity has not been established for the gaseous anaesthetic agents. A 1.2- to 2-fold increase in the incidence of cancer has been reported for operating room personnel. It is difficult to quantify this risk, and several authors have suggested that this risk is negligible. Halothane, enfurane and isoflurane have been shown to be teratogenic in rats after long term high exposure. The risk for low exposure is considered small.

Several studies have found a higher incidence of liver disease in operating room personnel. Halothane has been shown to cause halothane hepatitis in patients exposed to anaesthetic concentrations. Unfortunately, no cause-effect relationships have been found between low concentration exposure to halothane and liver disease. A similar situation exists for renal disease. An increase in headaches, irritability and fatigue has been reported after exposure to volatile anaesthetic agents. There is also an associated increase in risk for spontaneous abortion after exposure to anaesthetic gases.

Volatile anaesthetics destroy the ozone layer and are classified as greenhouse gases. With current interest in the ozone layer and the prevention of its destruction, certain European countries are considering introducing legislation to reduce volatile anaesthetic agents and nitrous oxide emission into the atmosphere.

The National Institute for Occupational Safety (NIOSH) in the United States of America lists the following as symptoms of exposure to halothane: irritation of eyes, skin and respiratory system; confusion, drowsiness, dizziness, nausea, anaesthesia; cardiac arrhythmias; liver and kidney damage; decreased audio-visual performance and reproductive effects. NIOSH recommends a maximum working limit of 2 ppm for volatile anaesthetic agents. Other European countries allow up to 5 ppm for volatile anaesthetic in the workplace.

The Occupational Health and Safety Act of South Africa (Act 85 of 1993 as amended by Act 181 of 1993), requires that every employer instructs employees on the hazards to their health with regard to any substance they may use, handle, store or transport. The act requires that the employer instruct the employee on the appropriate methods to handle and use hazardous substances and it also states that an employer must take appropriate measures to prevent unnecessary exposure to any hazardous substance. Failure do so is considered under the act to be an offence. Veterinarians are advised to take cognisance of this fact, as litigation may result. As part of the evaluation the South African Veterinary Council will perform on veterinary practices, scavenging will be one of the aspects to which attention will be paid.

A simple passive scavenging system may be constructed by attaching a hosepipe to the automatic pressure relief valve (pop-off valve) of the breathing circuit. This hosepipe acts as a conduit through a